Practical Programming, Validation and Verification with
Finite-State Machines: a Library and its Industrial
Application

Paulo Salem
S3o Paulo — Brazil

paulosalem@paulosalem.com

ABSTRACT

Finite-state machines (FSMs) are among the oldest mod-
els employed in the formalization and analysis of both soft-
ware and hardware. Owing to their simplicity, there exist
various implementations to support their practical applica-
tion in mainstream programming languages. Through such
software libraries, programmers can explicitly define states,
events and transitions in order to delegate the machine’s
execution to an underlying engine. However, as far as we
know, no such library provides formal verification capabil-
ities alongside its execution engine. That is to say, once
an FSM is defined, the resulting program cannot be used
as a formal specification to be subject to formal verifica-
tion, thereby not making the analytical tractability of FSMs
available. Formal verification, if any, is conducted in an inde-
pendent model separate from the program, thus duplicating
the information and creating the possibility of discrepancies
between both. In this paper we show how to overcome this
limitation. To this end, we present the VERUM library, which
allows the specification, execution and verification of FSMs
in the Ruby language, largely bypassing the need to explic-
itly employ an additional modeling language. Formal veri-
fication is achieved by automatically translating the source
program of the FSM into a Timed Automaton (TA) spec-
ification for the UPPAAL model checker. To illustrate the
value of the approach, we present the industrial problem
which inspired the creation of this tool and is currently us-
ing it, namely, a payment system. Besides the technical as-
pects of the tool, a number of practical lessons learned with
this application are explored. Although we describe very
concrete artifacts and applications, the overall approach is
quite general.

CCS Concepts

eSoftware and its engineering — Formal software ver-
ification; Frameworks; Software libraries and repositories;
Model checking;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2889160.2889226

Keywords

finite-state machines, lightweight formal methods, runtime
verification, Ruby, UPPAAL, payment systems

1. INTRODUCTION

Finite-state machines (FSMs)! are among the oldest mod-
els employed in the formalization and analysis of both hard-
ware and software (e.g., Parna’s 1969 Terminal State Tran-
sition Diagrams [18]). Incredibly, as far as we know there is
no support for the use of FSMs’ verification capabilities in
mainstream languages and frameworks (e.g., C, Java, .Net,
Ruby). At best, there are libraries to implement FSMs,
hence allowing programmers to benefit from their simplicity,
but which provide no direct support for their formal verifi-
cation or even simpler kinds of analyses. This is surprising
because a lot of the value of the model lies precisely in its for-
mal and analytical tractability. Indeed, this tractability is at
the heart of Model Checking [3], a successful and well-know
formal verification technique. This method, however, de-
pends on the prior definition of a formal specification, which
is independent of the program that must be developed to sat-
isfy it later (i.e., a top-down approach). Our concern, here,
is in making such verification capabilities available directly
at the program level, without a separate specification, to be
used as any other library that a programmer would normally
employ in developing a system (i.e., a bottom-up approach).

FSMs can be used when modeling simple, but critical,
systems. For this reason, we chose to employ an FSM when
implementing the payment system of a commercial applica-
tion. At first, we developed just an FSM execution engine,
but as errors were found later in the specification of the pay-
ment systems, it soon became clear that it would be useful
to enrich the FSMs with verification capabilities as well.

In this paper we present our solution to this problem and
an actual application in a commercial software. The solution
consists in a library, called VERUMZ, which allows the pro-
grammer to define FSMs directly in the source code. Once
defined, these FSMs can be both executed and transformed
in formal specifications. The current implementation is ca-
pable of generating a visualization of the machine and, more
importantly, a specification in the form of Timed Automata

1Until Section 3, the term finite-state machine refers broadly
to any model that consists mainly in explicit finite sets both
of states and transitions among these states. There are many
historic variations of this basic idea. Thenceforth, we intro-
duce and formalize a version used in our tool, to which the
term then refers.

2 As a convenient abbreviation of Verifiable Ruby Machines.

(TA)[2], suitable for verification with the UPPAAL model
checker [4]. The latter includes not only the various states
and transitions, but also the actual preconditions that guard
these transitions, including real-time constraints, thereby
creating a faithful formal representation of the FSM. The
library can be downloaded and used under an open-source
license.? Tt is implemented in the Ruby language [17], but of
course the principles on which it is based can — and should
— be ported to other languages.

The value of this contribution lies considerably in the fact
that we developed it as a response to a practical, commer-
cial, need. It therefore incorporates mechanisms sufficient
to a useful industrial application, a purpose whose satisfac-
tion would otherwise be unclear. Importantly, we show that
while a little sophistication is required, it is overall a simple
approach, and therefore a cost-effective effort.

This text is organized as follows. Section 2 comments
on related work. Section 3 presents VERUM, including the
translation strategy employed to render TA specifications.
Section 4, in turn, outlines the methodology that best suites
the presented technology. To show the relevance of the ap-
proach, Section 5 explores our industrial case study. Finally,
Section 6 concludes.

2. RELATED WORK

The use of FSMs in software development has been essen-
tially of two kinds. First, the description of an abstract
FSM as a specification (usually graphical) which is later
implemented as an actual program. This is the approach
taken notably by the Harel’s Statecharts [12], which today
are found incorporated in the UML standard [14]. There
are tools, such as Apache Commons’ SCXML [10], that can
directly execute these charts and connect them to other soft-
ware. There are also simpler FSM compilers such as SMC
[20]. Another way to use such specifications is to derive other
validation and verification artifacts automatically from them
(e.g., test cases [21]).

The second kind concerns the direct implementation of
FSMs, without a prior separate model. Execution engines
have been implemented so that programmers can directly
specify states, events and transitions, and have the result-
ing program to behave as an FSM (e.g., [9, 19]). As far as
we could determine, however, none of the existing tools pro-
vide verification capabilities in addition to their execution
engines.

There is, of course, a plethora of more powerful formal
methods that can be used to achieve similar aims as far as
expressiveness and verification are concerned. Approaches
such as the Z Notation [23] and the B Method [1] allow
abstract logical specification and gradual proof-based for-
mal refinements until an executable program is produced.
Model checking tools, such as NuSMV [7], PRISM [13] (for
probabilistic systems) or UPPAAL [4] itself, can be used di-
rectly to model and study the system of interest, although
the actual implementation must then be developed indepen-
dently and shown to be conformant. Most of these tools,
however, assume a strict top-down design and require dif-
ferent artifacts in each step: an abstract specification is de-
fined and then it is refined until an executable program is
reached; the specification and the program are two different
artifacts that must be managed independently, which means

3http://github.com/paulosalem/verum

_no_payed_days_left [0]

e_purchase_succeeds [0]

Figure 1: A simplified version of the main case
study presented later. States (bubbles) and events
in transitions (arrows) are labeled. The numbers af-
ter event names indicate their priority. Other con-
straints (i.e., invariants, preconditions and updates)
are not shown, but are defined in the corresponding
VERUM program.

that changes in one may not be reflected in the other. In
contrast, VERUM is designed so that the barriers between a
program and its formal specification become minimal and
easily handled by common, non-specialist, programmers in
a bottom-up manner. A VERUM FSM is completely defined
in the program itself, reuses many of its components both
for execution and for verification, and can be gradually en-
riched with more information that can be used in its formal
verification. For example, a fully executable FSM can be
defined without specifying any state invariants, which can
be gradually added later according to the practical needs
and possibilities of the programmers.

VERUM can be seen as a lightweight formal method. In
this sense, it has some similarities with Runtime Verification
(RV) techniques [11, 15], and in particular with Monitoring-
Oriented Programming [6]. Like in RV, a VERUM program
has information that allows its verification during execution,
and violations of the specification (e.g., invariant violations)
are reported. However, unlike RV, more sophisticated prop-
erties about the overall behavior of the system (e.g., tem-
poral logic formulas) are not verified during execution in
VERUM; rather, programs are supposed to be translated into
the input of a model checker and be subject to traditional,
exhaustive verification. Therefore, the types of problems
and guarantees that each technique can handle are differ-
ent.

Finally, although a central design principle of VERUM is
to reduce the amount of non-executable specifications that
must be defined, at certain parts this is not fully achieved
and the programmer is advised to add non-executable infor-
mation to aid in verification. In this respect, the approach
is similar to the Java Modeling Language (JML) and sim-
ilar techniques [16], in which a program is annotated with
a behavioral specification that is used as the basis for its
verification (that can be carried out either during runtime
or statically).

3. THE veEruMm LIBRARY

Although in its current implementation VERUM ultimately
uses TA as the formal model for verification, in principle the
technique could be adapted to other formalisms. Moreover,
as it is explained in Section 3.2, the desired behavior for the
FSM can be slightly different from what would normally oc-
cur in a TA. Therefore, we have opted to: (i) separate the
formal definition of the Finite-State Machine (FSM) used

in the execution engine from the formal model used in ver-
ification; and (ii) handle any discrepancies between the se-
mantics of both in the translation. In VERUM, an FSM is
formally defined as follows:

DEFINITION 1 (FINITE-STATE MACHINE). Let Exp(X)
be the set of all Boolean expressions that can be composed
with the variables in X. Then a Finite-State Machine (FSM)
s a tuple (V, S, so,inv, F, E, pre,update, T) such that:

e V is a set of formal variables with values given in some
set D. Both sets can be partitioned in subsets Vi, ..., Vy
and D1, ..., Dy, such that D; contains the possible val-
ues of variables in V; (i.e., variables are typed);

e S is a set of states and sop € S is the initial state;

e inv : S — Exzp(V) is an invariant labeling function
that assigns a Boolean invariant to each state;

e FFC S is a (possibly empty) set of terminal states;
e F is a set of events;

e pre: E — Exp(V) is a precondition labeling function
that assigns a Boolean precondition to each event;

o update : |JI_, (Vi, E) = D; is an update function that
assigns new values to each variable at each event;

o T'=SXEXSXZis a set of transitions with priorities.

This definition is an abstraction of the structure of VERUM
machines (which are Ruby programs), intended to allow one
to think about them in mathematical terms whenever con-
venient. In practice, however, a programmer simply writes
an FSM as a Ruby program, which is then either executed
or translated to the formal model of the underlying model
checker (currently UPPAAL’s TA).

In Section 5 we will present a case study in which a real
payment processing system is modeled and verified. In the
present section, however, we employ a simplified version of
this system as a running example in order to introduce the
main concepts of the library. In this simple machine, a user
begins with a free basic account for a service and is allowed
to purchase a premium version, with the possibility of a free
trial for a limited time before the purchase (see Figure 1).*

3.1 Architecture

The main architectural principle adopted is to allow the
same program structures to act both as executable programs
and as formal specifications. The programming language is
seen as a general expression substratum, which allows both
imperative commands and abstract constraints to be de-
fined.> When the program is running, the library merely
executes the FSM and monitors whether invariants hold.
The interesting part, though, is that the same definitions
that allow such an execution can be transformed in the in-
put of a model checker (or other similar verification or vali-
dation tool). In this manner, the need to provide a separate

4The program for this simpler version is included as an ex-
ample with the library and, therefore, can be freely down-
loaded and examined more fully.

5Ruby, incidentally, proved to be an excellent medium, since
the resulting programs are very readable.

formal specification is largely eliminated. The most signif-
icant cost left becomes that of writing the properties to be
checked. Below we present each of the relevant program
structures that implement the elements of Definition 1 to
achieve this design. The FSM is assembled by creating a
subclass of the provided Verum: :FiniteStateMachine class
and then, within its constructor (i.e., the method initial-
ize), making the appropriate method calls to establish these
structures. How the FSM thus created is translated to UP-
PAAL’s formal model is left for Section 3.2.

3.1.1 Variables

The translation from VERUM programs to formal specifi-
cations depends crucially on the definition, within the pro-
grams, of formal variables (i.e., the set V' of Definition 1)
using VERUM’s let method. These create a bridge, as it
were, between the execution of a program and its formal
specification. Consider the following declaration.

let :never_payed, type: :boolean, init: true
do
Calculation of the actual value of the
wvariable comes here. E.g., check a
database to see the wuser’s purchases.
end

On the one hand, during execution, a method named
never_payed is made available to the programmer and com-
putes whatever is specified in the let block. On the other
hand, during translation to a formal specification, the name,
type and other declared information are used to generate ap-
propriate TA variables. VERUM currently support four types
of variables, namely:

e Boolean. Declared just like in the above example. If
no initial value is specified, VERUM ensures that both
true and false are considered during verification.

e Integer. Also requires the definition of lower and upper
bounds (e.g., let :v, type: :integer, min: -20,
max: 20).

o Enumeration. Defined by an array of possible values
(e‘g.,let :v, type: :enumeration, values: [:a,
b, :cl)

e Chronometer. Defines a TA clock (e.g., let :v, type:
:chronometer). In practice, this can be used to model
variables such as, in our working example, how many
days have been used from a monthly subscription.

In relation to Definition 1, these types correspond to the
set D partitioned in four subsets.

3.1.2 States

Each state is declared with the state method, through
which it is named (e.g., s_trial_normal) and an optional
customization block can be passed. Within this block, a
builder object provides the programmer with customization
facilities.

state :s_trial_-nmormal do |s|
s.on_entry do
FEzecutable program comes here. E.g.,
update the database and send an email.
end

s.formal_invariant do

Formal invariants come here. E.g., days
in trial are bounded by a mazimum.
trial_days_used <= trial_days

end

s.formally_force_progress = true

Not used in this example:

s.submachine = another_machine
s.terminal
end

States thus defined correspond to the set S of Definition
1.

State effects.

The builder’s on_entry method allows the programmer to
define what is to be executed when the machine enters in the
state. This is how the machine is programmed to have an
effect on the rest of the system and does not affect formal
verification in any way. Note that, accordingly, this part of
the program does not have a representation in Definition 1
and is thus visible only to the execution engine.

Invariants.

The builder’s formal_invariant method, in turn, speci-
fies a Boolean expression that must be always true. It af-
fects both the execution of the machine and its formal ver-
ification. In the former case, invariants work as safeguards
against potential errors introduced through the execution of
on_entry blocks: the VERUM engine checks, at every state
entry, whether the state invariants holds after the corre-
sponding program execution. In the latter case, the expres-
sion is translated to a UPPAAL expression and is defined as
the invariant of the location in the resulting UPPAAL for-
mal specification. There is no need for the programmer to
write a separate specification: it is the very same program
that is used for both execution and verification. However,
to do this, the expressions allowed are actually a subset of
Ruby expressions (see Section 3.2 below). Notice also that
although invariants strengthen the reliability of the machine,
they are optional. Invariants thus defined correspond to the
function inv of Definition 1.

Force progress.

Normally, states will be required to progress (see discus-
sion on Progress in Section 3.2). If this is to be avoided, for
instance because the user can stay forever in a state, then
formally_force_progress should be set to false.

Sub-machines.

Finally, the builder’s submachine method allows the speci-
fication of a sub-machine to run in this state. This effectively
allows the composition of larger machines out of smaller
ones. During execution, this means that a state with a sub-
machine will only be able to advance if the sub-machine has
reached one of its terminal states (declared via the terminal
method in the builder; correspond to the set F' of Definition
1). For verification purposes, however, such sub-machines
are abstracted away in the present version of VERUM: each
machine used must be validated and verified separately.

3.1.3 Events

Similarly to states, each event is declared with the event
method. Together, these events correspond to the set E of

Definition 1.

event :e_purchase_succeeds do |e|
e.formal_precondition do
Restricted Ruby expression here. E.g.,
some payment must succeed.
credit_card_ok || transfer_ok
end

e.formal_update = {payed_days_used: 0,
never_payed: false}
end

Formal preconditions.

Preconditions guard events. When an event’s precondi-
tion is true, the corresponding transition may happen; oth-
erwise, it cannot happen. As with state invariants, precondi-
tions are Boolean Ruby expressions which are handled trans-
parently both in execution and in verification. For the same
reasons, expressions allowed as preconditions are a subset
of Ruby expressions (see Section 3.2 below). Preconditions
defined programatically correspond to the function pre of
Definition 1.

Formal variable updates.

TA allow the values of variables to be updated after transi-
tions. This permits one to constrain the values that variables
may have along the various execution paths, and therefore
make the specification more precise. VERUM provides the
formal_update builder method by which the programmer
can use this feature to improve the formal specifications of
his or her machines. The importance of the feature in the
technique proposed here is that VERUM cannot determine
what the machine is actually doing when it enters a state
(i.e., what is being done within the various on_entry meth-
ods of states, and in particular how program variables are
being changed), since the programmer is allowed to specify
any program to run within states (i.e., VERUM’s engine en-
forces the transitions among states, not what happens once a
state is reached). Unlike invariants and preconditions, which
are specified only once and automatically translated to the
underlying formal model, here the programmer does have to
duplicate the information. That is to say, besides the actual
assignments within various on_entry methods, the program
can be further enriched by explicitly declaring some of these
assignments through the formal_update method. This du-
plication of information is an important limitation of the
proposed method, but nevertheless allows more precise for-
mal specifications. Formal updates thus defined correspond
to the function update of Definition 1.

3.1.4 Transitions

Transitions are declared through the transition method
and specify that a state may reach another through an event
with a certain (optional) priority, for example:

transition :s_basic_account ,
:s_trial_normal , 0

:e_begin_trial ,

The priority is given as an integer (zero by default, made
explicit above). VERUM transitions are deterministic, which
means that if two transitions are enabled at once with the
same priority an exception is raised. Interestingly, we no-
ticed that subtle errors can be corrected simply by adjusting
priorities of certain transitions. Transitions thus specified
correspond to the set T' of Definition 1.

3.2 Translation

Given an FSM program, VERUM can translate it to the
input notation of UPPAAL, which implements the theoret-
ical construct of Timed Automata but also introduces id-
iosyncrasies specific to the model checker (e.g., priorities)
[4]. Here, it suffices to say that in UPPAAL a TA is a pro-
cess that defines variables (including clocks), communication
channels, locations and transitions among these locations.
Locations can be labeled with invariants and transitions can
be labeled with various constructs, including guards, assign-
ments and synchronization clauses. The minute details of
the translation procedure can be examined directly in the
implementation available for download and require under-
standing of the UPPAAL conventions. Here we present only
its main characteristics.

The translation begins with the definition of a main UP-
PAAL process to represent the FSM, called simply Process.
As far as syntactically possible, names of states, variables
and other elements are unchanged. Hence, a variable called
z can be referred to as Process.z.

States.

Each state of the FSM is translated as a TA location en-
riched by the invariant specified in the state (see Precon-
ditions and invariants below for details). For the sake of
illustration, let us consider what the UPPAAL translation
of the the state s_trial_normal seen in the example above
looks like:

<location id="s_trial_normal">
<name>s_trial_normal</name>
<label kind="invariant">
(d &1t;= 100000000) and
((trial_days_used <= trial_days))
</label>
</location>

It is an XML® element with the same information and
an extra invariant (using a variable d) which is explained
in Progress below. In the next subsections the actual XML
translations are not shown, but the reader interested in these
details can refer to the source code available for download.

Events and Transitions.
Transitions are modelled as TA edges between locations
and enriched by the following constructs:

e The precondition of the event in a transition is trans-
formed in a guard of a TA edge (see Preconditions and
invariants below for details);

e The update specified by the event in a transition is
transformed in an assignment clause of the TA edge;

e The priority of the transition is transformed in a syn-
chronization clause of the TA edge, in which a special
channel is used (see Transition priorities below).

Preconditions and invariants.

In order to translate an event’s precondition or a state’s
invariant, VERUM accesses the related source program and
builds its abstract syntax tree (AST). Then, it recursively
translates the AST to UPPAAL notation elements. In order

SExtensible Markup Language.

to make this procedure feasible, the invariants and precon-
ditions must be defined as expressions using a limited subset
of the Ruby language, which at present consists of the fol-
lowing elements:

e References to the formal variables defined previously,
which are actually method calls;

e Logical constructs: or (||), and (&&), if expressions
(if ... else ... end), true and false;

e Comparators: <, >, <=, >= == I=;
e Arithmetic operations: +, -, /, *;

e The special method any (), which can be applied to for-
mal variables, and makes it explicitly that the variable
can take any value (in execution this method simply
returns true).

The set of all such expressions correspond to the set Exp(V')
of Definition 1. Note that this includes complex expressions
formed by nested logical constructs and employing multiple
variables, comparators and operations.

If the programmer employs an unsupported construct, an
exception is raised. Though limited, in our experience this
proved to be a sufficient vocabulary for useful applications
(see Section 5).

Progress.

The normal TA semantics allows an automaton to stay
forever in a state, even if there are transitions available.
However, we designed VERUM to always take a transition
when one is available. That is to say, the system always
tries to progress. To approximate this behavior in a TA,
the translation to UPPAAL ensures that any non-terminal
state eventually reaches a timeout and the automaton is
forced to progress to another state (unless the programmer
explicitly disables this provision). This is achieved by: (i)
defining a special clock, d, and assigning the invariant d <=
max_delay to every non-terminal state, where max_delay is
a user-defined constant; (ii) and resetting d to 0 on every
transition.

Transition priorities.

A separate UPPAAL process called PriorityEnforcer is
defined to run in parallel with the main Process. This aux-
iliary process is comprised of one state, loop transitions and
corresponding synchronization channels, one for each prior-
ity number used in the FSM. Channels are ordered according
to their priorities using the chan priority UPPAAL com-
mand. Transitions in the main Process then obey the prior-
ity ordering because they synchronize with a corresponding
loop transition in PriorityEnforcer.

Properties to be checked.

Finally, the properties to be checked must be translated to
UPPAAL notation. The simplest manner in which VERUM
allows this is through the method uppaal_spec(spec), which
simply takes the given UPPAAL specification spec and in-
serts it in the proper place in the final TA file. This, of
course, requires special knowledge of UPPAAL itself, which
is an extra burden for the programmer. To mitigate this
problem, a number of higher-level methods are also pro-
vided. These are explored in Section 3.4 below.

3.3 Execution

The FSM object does not change state on its own. To
advance, the method next! must be called. Optionally,
a context Hash parameter can be specified. As the name
implies, this parameter provides a way to inject contextual
information in the machine’s execution, which can then be
accessed by the machine’s states and events. Conversely,
during the evaluation of states, the method output is made
available in order to compute outputs, which can later be
accessed by the program employing the FSM object. Fi-
nally, the FSM class may override the base method synch,
which is always (automatically) called before a state is en-
tered. This method is supposed to synchronize the internal
state of the FSM with external sources (e.g., a database).
Other convenience methods are also provided, but we do not
explore them here. If at any point in all this an invariant
is broken, an exception is raised — hence a form of Runtime
Verification is also performed.

3.4 Verification

As any program, the FSMs thus obtained can be sub-
ject to testing: they can be programmatically instantiated,
put under certain conditions, and have their behavior moni-
tored. Such is the approach largely adopted by the software
industry. Our focus here, however, is in the formal verifica-
tion capabilities provided by VERUM, which can supplement
such traditional testing.

The programmer is kept as close as possible to his or her
native programming language. As we have seen above, this
is achieved by producing a TA from the program itself that
can be subject to Model Checking. The verification thus
performed has a number of important characteristics:

e Boolean variables used in preconditions can automati-
cally and systematically be assigned all possible values,
which would be tiresome to do manually in testing;

e The results of formal verification are, in reality, over-
approximations. Because the verification considers all
possible paths of the machine, it can find paths that
in real execution would never happen. Therefore, the
result of the verification must be used as a diagnostic
tool, not as a final verdict;

e Verification can be partial. It is possible to gradually
enrich the model with more information, even though
it is already working normally in execution. This hap-
pens because not all necessary information for verifica-
tion can be derived automatically. Preconditions, it is
true, are translated automatically. But updates that
represent internal changes caused by the software must
be added manually.

These considerations suggest that neither testing nor for-
mal verification alone is enough. Each one has a role and
must be allowed to play it.

Temporal properties.

A major advantage of translating FSM programs to the
input of a model checker is the reuse of the temporal logic
used to make assertions about the FSM. UPPAAL provides
a version of Timed CTL that allows the expression of reach-
ability, safety and liveness properties.

However, it must be noted that these are subject to severe
limitations in the present version (4.1.19) of UPPAAL. The
first and most important one is the impossibility of nest-
ing temporal operators. The second problem lies in liveness
properties: assertions of the form AG1y) (“eventually 1 hap-
pens”) and the derived form ¢ ~~ 1, called leads to, which
asserts that whenever ¢ happens, ¥ will eventually happen.
The latter can be useful, for example, to assert that every
purchase has a proper conclusion (e.g., by succeeding or fail-
ing). This kind of formula is supported by UPPAAL, but
only if transition priorities are disabled. Since our trans-
lation requires the use of priorities for a faithful represen-
tation of the machine behavior, it follows that we do not
have this important kind of property available through UP-
PAAL. Nonetheless, it is possible to instruct the translation
to disregard priorities, which produces an abstraction of the
actual behavior of the FSM that can then be checked using
liveness properties.

VERUM also provides methods that simplify the task of
defining temporal properties. Instead of writing the UP-
PAAL query itself, programmers may simply call one of the
following methods (among others), providing only the state
names of interest as parameters:

e uppaal_all_reacheable_except(exceptions): requires
that all states defined in the machine are reachable, ex-
cept the ones specified. Our case study suggests that
this is a useful pattern;

e uppaal_may_repeat_forever (names): requires the spec-
ified states may be repeated forever;

e uppaal_inevitable_states(names): requires that all
states in the array names are always reached eventually
(i.e., A<> name). As pointed out previously, this can
only be checked if transition priorities are disabled;

3.5 Visualization

Once translated to the UPPAAL notation, the model can
be visualized as a graph within UPPAAL’s own user in-
terface. Nevertheless, VERUM also provides a more direct
method, independent of any translation to TA, to visualize
the FSM. As an example, see Figure 1. Since visualizations
provide another perspective to the behavior of the FSM,
they are useful mainly as a validation mechanism.

4. METHODOLOGY

The library is meant to be used in two manners:

e Model to program. As it is usually recommended, first
a model can be developed and only later its program-
matic details need to be inserted. VERUM makes this
procedure simpler, since the modeling primitives are
expressed in the same language as the program that
should complement it later, namely, the Ruby lan-
guage. In this manner, programmers can write the
models in the tools they are already familiar with,
and only later submit the generated specification to
a model checker. Furthermore, the fact that specifica-
tion and program are all in one single document (i.e.,
the program file itself) prevents unnecessary duplica-
tion of the specification information in, say, a separate
file. Therefore, our approach makes maintenance of
the system easier, since there is no need to keep two
distinct artifacts evolving in parallel.

e Program to model. Given an existing FSM already in
use, it is possible to gradually enrich it with formal
annotations so that a suitable model can be generated
and subject to Model Checking.

In both cases, the fact that modeling is achieved progra-
matically is essential. It is interesting to note that such a
scheme goes against the traditional workflow for designing
FSMs, which consists in doing so first visually, and only later
enrich it programmatically. This methodology is implicit,
for instance, in UML and related technologies. A library
such as VERUM provides the technology for an alternative
method.

S. CASE STUDY

The motivation and main application of VERUM is to be
found in the payment subsystem of a commercial application
we develop, called Liberalis”, which currently manages more
than 2500 users. The application has a free, ad-supported,
version, which we call Basic and a payed version, which we
call Premium. Moreover, users may test the Premium offer
for free during a trial period of 30 days.

From the start we realized that it would be best to de-
sign and implement this subsystem as an FSM. But even
with this provision, it soon became apparent that the mere
design discipline imposed by the use of an FSM was not
enough, since errors were later found. Thus, we decided
that it would be worth to extract the formal FSM model
from the implementation to perform Model Checking.

At first, we tried to extract just states and transitions,
without worrying about the preconditions guarding the tran-
sitions. However, this simple approach was not very useful,
since too many false positives and negatives were generated
(i-e., paths that would never happen in the actual machine,
owing to the various preconditions, were reported to take
place). We were thus led to explicitly model the relevant
variables and related preconditions.

The main payment system was implemented as an FSM
with 21 formal variables, 14 states, 20 events and 46 tran-
sitions. Its full graphical representation, as rendered by
VERUM using GraphViz, is shown in Figure 2. This main
FSM itself depends on another smaller sub-machine, but
formal verification was applied only to the main one, which
controls the overall payment process and was the source of
our central problems.

5.1 Addressable Problems

VERUM is capable of detecting a number of problems we
faced during the development of this payment system. Here
are two real errors we encountered and that could have been
detected by the tool, as well as another that was actually
revealed by it:

e Unezxpected cycles. The original payment system had
an error that would allow a user to receive Premium
services without actually ever paying. This error relied
on the fact that users are given some extra grace days
after their free Premium trial period expires in order
to make their purchase. However, if the purchase fails
(e.g., because the credit card was declined), the FSM

A web application, located at http://liberalis.biz,
which allows liberal professionals (e.g., lawyers, psycholo-
gists, physicians) to easily create their business web sites.

was again sent to the state on which users had grace
days and could try to pay again

(i.e., s_trial_grace_period). As long as payment kept
failing, this cycle would continue, effectively providing
free services to users. The solution we adopted was
simply to add a high-priority transition after a pur-
chase failure that downgrades the user’s account to a
Basic free one. The following specification now checks
that this error no longer happens:

uppaal_spec("A[] !(Process.s_trial_grace_period
and

Process.trial_days_used > 50)").

e Missing transitions. If the FSM runs late and the user
did not wish to make a purchase, he or she could stay
permanently in the s_trial_normal state, hence vio-
lating the limit of 30 free Premium days. To correct
this, we added a transition that detects the condition
and automatically downgrades the account to Basic
(i.e., the s_basic_account state). The following spec-
ification now checks for this problem: uppaal_spec
("Process.s_trial_normal
and (Process.trial_days_used > 30) —->
(Process.s_basic_account)").

e Recovering from failure. While observing the behav-
ior of the machine at the s_purchase_failure state
through UPPAAL’s simulator, we noticed that, under
specific circumstances, the machine would be stuck in
this state forever. We traced the problem to an erro-
neous precondition of an event. After correcting it, the
following property was properly verified:
uppaal_spec ("E<> Process.s_basic_account and
Process.purchase_failed_at_least_once
and Process.never_payed and
Process. trial_begin_date_nil") .

It states that it is possible to reach s_basic_account af-
ter a purchase fails and other conditions hold. Notice
that this property uses a variable called
purchase_failed_at_least_once, which is an artificial
addition to cope with the limited temporal vocabulary
available in UPPAAL. As the name implies, this vari-
able is set to true whenever a purchase fails.

A number of other properties are defined as well in the
system. The objective is, of course, not only to ensure
their validity at present but also to make sure that they
continue to hold as the system evolves. A simple exam-
ple is that users may remain forever with a Basic account
(uppaal_may_repeat_forever ([:s_basic_account])). A
more interesting example concerns reachability: all states
except s_suspended and s_premium_free_account must be
reachable (uppaal_all_reacheable_except ([:s_suspended,
:s_premium_free_account])). The first exception arises
from the fact that when the application was released a user’s
account could be suspended, but later it was decided that
suspension would no longer take place (the account would
simply be downgraded to the Basic version instead). Nev-
ertheless, some users were already suspended, and therefore
we kept the corresponding state, although it was no longer
reachable. The second exception comes from the fact that
some users may have a special, permanently free, Premium
account, which is never charged nor downgraded. Finally,
other states in the machine may be unreachable depending

[1) Ajpenuour Bupmoarsiuawiked

1] vonezuioune wawAed Buwmoaruiseq

feruaur Bupnoossiuauiked 3

[1] Arenour Surnoar s uawied 3

[0] unooe 150 papuadsns“apeidumop>

0] uonezuopne wawed Bunoar uisaq o

Ry ensouruawed Surmoars wunoaowiseq o s

(1] Aiperuaur Supmoarsi uauiked pd=20es8 e

,,

[0] 980" pousada0es3fewn~a /[1] 190" pouad~a0w13"paked-d,

[1] Aifenuour Burmoarsuowed > pouad-aoei3[e~s

[0] oI skep~emoua

andxo-ornoqe eI [0] worskepernouo

wonzuoyne wawiAed Surmoaiuideq fo1 oI skep emmay 3 [1] AitensourSumoarsruawied 2\, 0] 3080 popad-20wid pased 4

1] uonezuoyIng JawAed Burmooiur3aq amjrej~oseyomds

nsjuawed Surmoar

[0] worskep-pakedmay

[0] sty aseyomd ™ [0] spaaons~aseyoind 2

(1] vonezuoqne wawked Furmoar uiag

[0] spaaoans~aseyoimd >

Surseyomd-s

[1) aseyoind-uiSaq

0] aseyond-uidoq >

[0] swiBaq e fo] aseyomd-uiSaq

UN02EDISEq S

t system. The number after each

d other details are not shown, but are specified in

in paymen

The full set of states, events and transitions of the mai

Figure 2

ions an

ty. Preconditi

S priori

event indicates the transition’

the FSM’s program and are verified.

on how the initial configuration is defined, so some care must
be taken when interpreting the result of this verification.

Some of the above properties may seem so trivial as to
be unworthy of verification. However, we have found that
it is easy to disrupt them easily as changes are performed.
Consider, for instance, the addition of a new transition from
a state that has already numerous transitions coming out
of it (such as s_purchase_failure we considered above; see
also Figure 2). It is possible to mistakenly assign a priority
to the new transition in such a way that it becomes im-
possible to take other previously feasible transitions. Under
such circumstances, reachable states can suddenly become
unreachable.

These considerations support the hypothesis that the ap-
proach provided considerable and useful extra information
about the payment system. Both verification and validation
aspects were improved, and at little extra cost, which is a
good investment for a system seen as particularly critical
within the business. It may be argued that a more tradi-
tional formal verification approach could have provided sim-
ilar or better verification benefits. To this we can say that,
while it is true that there are more sophisticated and reli-
able methods available to handle the presented application,
they also require much more knowledge and commitment
from developers. Such requirements are often not possible
to meet in practice, therefore an approach such as VERUM
is quite useful. A number of other general lessons learned
during the case study are commented in the next and last
section.

6. CONCLUSION

In designing VERUM we have deliberately aimed at reusing
existing verification technology instead of developing it our-
selves. We have considered a number of alternative model
checkers, such as NuSMV [7], but ultimately we settled with
UPPAAL because TA in general, and UPPAAL’s implemen-
tation in particular, allowed the simplest and richest trans-
lation we could think of. Nevertheless, there is some mis-
match between our intended semantics and that of TA. For
instance, while a TA does not have to change the current
state even if it has enabled transitions, VERUM requires that
enabled transitions are always taken. We overcame this and
similar difficulties by encoding special patterns in the UP-
PAAL translation. This shows that the task is not simple,
and while the translation is obviously useful, it does carry
the disadvantage of not being a simple copy of the original
machine, making it harder to understand if one tries to read
it directly. It is also important to note that we did not prove
the translation to be correct, but merely relied on intuitive
arguments used for its construction and the rather direct
correspondence with respect to certain elements (e.g., states
of the FSM and locations of the TA). A formal proof, how-
ever, would be clearly desirable and is left as possible future
research.

The practical benefits of the approach do come with draw-
backs, some of which have been explained in the text. Per-
haps most important, because arbitrary programs can be in-
serted in the FSMs (i.e., through the on_entry method; see
Section 3.1.2), properties that are true in verification may
be false during execution (e.g., invariants may be violated
during execution). For this reason, VERUM should be used
as a tool to increase one’s understanding and confidence in
a system, not to prove its ultimate correctness.

A number of practical lessons can be learned from the
presented industrial case study. Besides the most evident
ones commented throughout the paper, the following are
also worth emphasizing:

e Proper level of simplification. For the sake of sim-
plicity, initially we ignored preconditions and invari-
ants during formal verification, thereby analyzing only
state transitions. This simple approach, however, was
too imprecise to be useful (i.e., too many false posi-
tives and negatives), so we had to add the more so-
phisticated capabilities described in the paper. This
experience illustrates well that, like Albert Einstein is
reported to have said, things should be made as simple
as possible, but not simpler.

e [Enriching existing software. Our initial FSM imple-
mentation was a simple execution engine, with no for-
mal verification capabilities. When adding such capa-
bilities, we aimed at minimizing the changes involved
in the existing software. The result was that while
some changes were necessary (e.g., the explicit dec-
laration of formal variables; see Section 3.1.1), little
extra information was actually needed. Most of the
changes involved were, in essence, changes of syntax,
to allow the necessary information for the construction
of the TA model to be extracted from the program.

e Gradual specification. The more information is avail-
able (e.g., formal invariants), the better, but the tech-
nique allows the gradual addition of such information.
This proved useful in the case study because there was
too much software to be enriched at once. In general,
this capability allows developers to choose the appro-
priate level of formal modeling needed at any given
time. This possibility contrasts with traditional formal
verification approaches, which typically require com-
plete specifications before an actual working software
can be produced.

e Validation through formal modeling. Although the TA
model is meant mainly for verification of temporal prop-
erties, it turns out that it is easy to simulate and ma-
nipulate it in the UPPAAL user interface in a way that
increases our understanding of the system. A specific
fault was detected in this manner (Section 5.1).

With respect to scalability, the technique presents the
same power and limitations of the underlying model checker,
because the translation procedure itself has linear complex-
ity with respect to the program size. The real burden, if any,
is left for the formal verification algorithm. In the case of
UPPAAL, it has been successfully applied to many indus-
trial systems [5], which suggests that it scales sufficiently
well to be useful in industrial practice. In the application
reported here, for instance, verification took negligible time.

An alternative approach that we have not yet tried would
be to implement a verification method specially designed to
handle our specific FSM implementation. In particular, a
Model-Based Testing approach [22] could be used in a rela-
tively easy manner. Small machines could be exhaustively
tested, larger ones could have a certain number of random
paths selected and tested [8]. All this could be accomplished
within the library itself, with no need of external tools, and
could work as part of the usual regression testing commonly

used in industry today. However, such an approach would
bring one complication: how to specify the properties of in-
terest. When translating the problem to an external tool
such as UPPAAL, one gains for free a language in which to
query temporal properties about the model (in UPPAAL’s
case, a version of TCTL). If, however, the FSM library is to
perform verification alone, it must also provide some means
of expressing temporal properties in addition to the mecha-
nism to explore its various execution paths.

Given all this, we can also now point out that it would
not be simple to take an existing FSM library and somehow
add the verification capabilities we described here. First
because, as we have shown through the article, some funda-
mental software design decisions are crucial to permit later
verification (see Section 3.2); for instance, it is easy and
sensible for a mere execution engine to allow any kind of
programmable precondition and invariant, but this impacts
negatively the verifiability of the resulting system. Second,
verification techniques and tools are very idiosyncratic as to
their semantics and the elements they support, and there-
fore it would be hard to match the semantics implied by an
existing tool, possibly quite powerful, with that of a model
checker, possibly quite limited.

The technology and related methodology presented here
fill a niche previously ill-served. We have shown that such
an approach is useful, technically feasible, cost-effective and
practical, thus a promising direction to follow. It would be
interesting to further validate this approach through inde-
pendent applications, specially in areas which are felt to re-
quire additional safeguards against errors, such as financial
systems. We expect and encourage others to either build
upon our tool or to develop similar ones.

7. REFERENCES

[1] J.-R. Abrial. The B-Book: Assigning programs to
meanings. Cambridge University Press, 2005.

[2] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183 — 235, 1994.

[3] C. Baier, J.-P. Katoen, et al. Principles of model
checking. MIT press Cambridge, 2008.

[4] G. Behrmann, A. David, and K. Larsen. A tutorial on
UPPAAL. In M. Bernardo and F. Corradini, editors,
Formal Methods for the Design of Real-Time Systems,
volume 3185 of Lecture Notes in Computer Science,
pages 200—236. Springer Berlin Heidelberg, 2004.

[5] G. Behrmann, K. G. Larsen, O. Méller, A. David,

P. Pettersson, and W. Yi. Uppaal — present and
future. In Proceedings of the 40th IEEE Conference on
Decision and Control, volume 3, pages 2881-2886.
IEEE, 2001.

[6] F. Chen and G. Rogu. MOP: An Efficient and Generic
Runtime Verification Framework. In Object-Oriented
Programming, Systems, Languages and
Applications(OOPSLA’07), pages 569-588. ACM
press, 2007.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An opensource tool for
symbolic model checking. In E. Brinksma and
K. Larsen, editors, Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science,
pages 359-364. Springer Berlin Heidelberg, 2002.

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

22]

23]

A. Denise, M.-C. Gaudel, S.-D. Gouraud,

R. Lassaigne, J. Oudinet, and S. Peyronnet.
Coverage-biased random exploration of large models
and application to testing. Technical Report 1494,
LRI, Université Paris-Sud XI, June 2008.

A. H. D6nni. The boost statechart library.
http://www.boost.org/doc/libs/1_60_0/1ibs/
statechart/doc/index.html. Last accessed: February
8th, 2016.

T. A. S. Foundation. Commons SCXML.
http://commons.apache.org/proper/commons—
scxml/. Last accessed: February 8th,

2016.

M. Geilen. On the construction of monitors for
temporal logic properties. Electronic Notes in
Theoretical Computer Science, 55(2), 2001.

D. Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming,
8(3):231-274, 1987.

A. Hinton, M. Kwiatkowska, G. Norman, and

D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In H. Hermanns and

J. Palsberg, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 3920 of
Lecture Notes in Computer Science, pages 441-444.
Springer Berlin Heidelberg, 2006.

O. M. G. Inc. Unified modeling language.
http://www.uml.org/. Last accessed: February 8th,
2016.

M. Kim, S. Kannan, I. Lee, O. Sokolsky, and

M. Viswanathan. Java-MaC: a run-time assurance tool
for java programs. In Runtime Verification 2001
proceedings, volume 55 of ENTCS. Elsevier Science
Publishers, 2001.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: a java
modeling language. In Formal Underpinnings of Java
Workshop (at OOPSLA’98), 1998.

Y. Matsumoto and K. Ishituka. Ruby programming
language. Addison Wesley Publishing Company, 2002.
D. L. Parnas. On the use of transition diagrams in the
design of a user interface for an interactive computer
system. In Proceedings of the 1969 24th National
Conference, ACM ’69, pages 379-385. ACM, 1969.

A. Pfeifer. state_machine.
https://github.com/pluginaweek/state_machine.
Last accessed: February 8th, 2016.

C. W. Rapp. SMC: The state machine compiler.
http://smc.sourceforge.net/. Last accessed:
February 8th, 2016.

V. Santiago, N. L. Vijaykumar, D. Guimaraes, A. S.
Amaral, and E. Ferreira. An environment for
automated test case generation from statechart-based
and finite state machine-based behavioral models. In
IEEE International Conference on Software Testing
Verification and Validation Workshop (ICSTW’08),
pages 63—-72. IEEE, 2008.

J. Tretmans. Model based testing with labelled
transition systems. Formal methods and testing, pages
1-38, 2008.

J. Woodcock and J. Davies. Using Z: Specification,
refinement, and proof. 1996.

