
The Case for Experiment-Oriented Computing
Paulo Salem

Dell EMC

São Paulo, Brazil

paulosalem@paulosalem.com

ABSTRACT
Experimentation aspects (e.g., systematic observation, exploration

of alternatives, formulation of hypotheses and empirical testing)

can be found dispersed and intertwined in many software systems.

Numerous examples are provided in this article. This suggests that

experimental activity is a class of computation in its own right.

By abstracting the relevant experimentation features, a general

Experiment-Oriented Computing (EOC) approach, orthogonal to

other Software Engineering issues, is formulated in this article.

Through this separation of concerns, it is possible to clearly pursue

both theoretical and applied research with respect to experimental

aspects. Concrete directions for such research and development are

also given to illustrate the value of the approach.
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1 INTRODUCTION
Systematic observation, formulation of hypotheses and empirical

testing, among other methodological processes, are at the heart

of modern science. Many software (and hardware) systems have

similar concerns, which suggests that scientific experimentation

can be seen as a form of computation. Having this in mind, an

experiment can be broadly defined as a computation in which an

experimental setup, under the control of an experimenter, interacts
with autonomous subjects in order to extract information for a
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Figure 1: The EOC architecture, including various separa-
tion of concerns and the resulting workflow (steps 1 to 5).
Subjects can be anything with which interaction is possible
(e.g., people, other computing systems). Resultsmay include
verdicts, statistics or other structures, both for the apprecia-
tion of the experimenter and for reuse in later experiments.

particular purpose. Figure 1 illustrates the software architecture and
workflow thus induced. The present article develops this way of

understanding computation and its practical realization.

In Software Engineering, perhaps the most traditional area in

which experimentation aspects are present is Software Testing [1].

This becomes clear by carefully stating the problem of interest: a

certain subject (system under test) undergoes a number experiments

(test executions) in order to check, empirically, whether certain

properties (test cases) hold or not. Testing engines, therefore, are

rather general experimentation technologies, although they are

usually employed only for software verification.

Such experimentation concerns are widespread in Computer

Science, although often intertwined with other matters and thus

not fully appreciated in their own right. This text provides ample

evidence of this (Section 2) and proposes supporting experimenta-

tion principles that can be abstracted (Section 3). In this manner,

Experiment-Oriented Computing (EOC) is established as a distinct

way of designing computing systems.

The importance of highlighting such common aspects is not only

theoretical, it has historical precedents. For instance, concurrent

programming could only be properly formulated and addressed by

recognizing concurrency as a separate aspect of systems [17]. The

case for experimental features of systems is similar. Hence, tech-

nological development and research directions, as well as some

examples of practical software that could arise from this under-

standing, concludes the exposition (Section 4). The article aims

both at emphasizing the increasing importance of experimentation

engineering and at driving its progress through a unified conceptual

foundation.
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2 EXPERIMENTATION IN PRACTICE
The following examples have been selected to provide a somewhat

wide perspective on thematter, although they do reflect the author’s

biases and interests. Nevertheless, these should be sufficient to

convince the reader of the pervasiveness of experimental aspects

and motivate his or her own observations.

Software Testing. As pointed out in Section 1, Software Testing

[1] is an exemplary case of computational experimentation, which

can be readily seen under the architecture of Figure 1.

Formal Verification. Formal Verification consists in determining

whether a system (like Software Testing) or model (unlike Soft-

ware Testing) satisfy a set of properties. Such properties are defined

in special mathematical notation (e.g., temporal logics, automata,

expressions in process algebras), which varies according to the veri-

fication technique employed (e.g., Model Checking [2], bisimulation

verification). Like in traditional scientific methodology, hypotheses

are formulated and evaluated, although in these different notations.

However, verification is purely mathematical, not empirical.

Model-Based Testing (MBT), Runtime Verification (RV). Common

ground exists between these two broad verification areas. Model-

Based Testing [20, 44] consists in using abstract models of systems

in order to generate test cases such that the system can be tested

with respect to certain criteria. In Runtime Verification [7], on the

other hand, no test cases are necessary, one monitors the actual ex-

ecutions of systems in order to continually check formally specified

properties.

Discrete-Event Simulation (DES). Simulations can be seen as the

manipulation of autonomous experimental subjects. For example,

the execution and analysis of simulations can be directly expressed

in experimentation terms: the properties to be satisfied are the (for-

mally specified) hypotheses of an experimenter, the simulated sys-

tem (defined through models, formulas or programs) is the subject

under experimental investigation [6, 37]. Optimization of simulated

systems is yet another application [15].

Search-Based Software Engineering (SBSE). Many Software Engi-

neering problems can be cast in terms of optimization procedures,

an observation that created the field of Search-Based Software En-

gineering [18]. Because this usually requires heuristic searches, the

approach can be understood as trial and error experimentation.

Furthermore, some SBSE techniques do require interaction with

truly autonomous subjects, as the next example shows.

Automated User Interface Design. User interfaces (UIs) can be au-

tomatically generated, evaluated and optimized. Approaches differ

with respect to which and how these activities are automated. Of

critical importance here is that some do not require actual user in-

teraction for generation [12], while others do [24, 36]. In all of them,

however, human ingenuity (in crafting the building blocks of UIs

or the user experiments) is combined with algorithmic techniques

(during execution).

Distributed Systems. Experimental profiling of distributed sys-

tems has been proposed as away to evaluate infrastructure providers

[39] and actively disrupting production clusters is used in practice

to ensure their fault-tolerance [3].

Machine Learning (ML), Data Mining (DM), Data Science (DS).
The whole field of Machine Learning can be understood from an

experimentation perspective, since it concerns the formulation

of hypotheses that best explain experiences [30]. In industry, the

derived fields of Data Mining [45] and, more recently, of Data

Science [9] are also closely related.

Scientific Discovery. Artificial Intelligence (AI) often depends on

empirical methods. The work of of Langley et al. [25], in particular,

establishes a direct relationship between computing and traditional

scientific practice to investigate the computational aspects of scien-
tific discovery. Džeroski et al. [11] provide more recent results on

the topic. The “robot scientists” of Sparkes et al. [41] demonstrate

how such discovery systems can be augmented with physical in-

teraction capabilities, hence allowing fully autonomous biomedical

experimentation.

Reinforcement Learning. Both supervised and non-supervised

Machine Learning methods typically assume data as given. From

the point of view of engineering experiments, a more interesting

approach is that of Reinforcement Learning (RL) [42], in which

agents are supposed to interact with an environment in order to

generate the necessary data. This emphasizes the fact that acquiring

information is a challenge in its own right.

Causality. One critical objective of many traditional scientific ex-

periments is to determine causal relations. In Artificial Intelligence

(AI), this matter has been extensively studied, notably through

Bayesian networks. General computational understanding of causal-

ity is now available [32].

Black-Box Optimization. In optimization problems, black-box

approaches such as Auto-WEKA [43] and Google Vizier [14] can

be understood as experiments as well. The latter is a particularly

interesting example, because it provides not only the necessary al-

gorithms, but also a sophisticated software infrastructure to support

the entire workflow.

Empirical Software Engineering. The field [40] consists in using

experimental techniques to assess the characteristics of software
artefacts and engineering practices. By contrast, in EOC one is

interested in building systems that perform experiments. Naturally,

one can imagine an EOC system that supports Empirical Software

Engineering.

3 SUPPORTING PRINCIPLES
The main elements of an EOC architecture, presented in Figure

1, are rather straightforward and intuitive. The discussion above,

moreover, shows many ways in which experimentation capabili-

ties are found dispersed in current computing technology. In the

present section, supporting principles are abstracted from these ex-

isting approaches, in order to provide a unified foundation for such

capabilities. These principles are not claimed to be exhaustive, but

simply important and of sufficient generality. Table 1 summarizes

these relationships. It is also indicated to which elements of the

architecture given in Figure 1 each principle mainly applies.
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Table 1: A name or reference in a cell exemplifies how the principle (column) can be realized in a field (row). If the principle is
present but no particular name or reference is appropriate (e.g., because it is too fundamental), a ✓is used instead. The table is
not exhaustive and is aimedmerely at illustrating the cross-sectional character of the principles, as well as to suggest potential
complementarities among different fields. The latter is best understood by imagining how to fill in the blanks.

Field Hyp. Form. Optm. Expl. Coord. Nondet. Reprod. Traceab. Durab. Fault-

Tol.

Lab.

Soft. Test. test cases ✓ test case

granular-

ity

IDE sup-

port

Formal Verif. formal spec. [19, 29] [19, 29] ✓ spec.

granular-

ity

[4]

MBT, RV formal spec. coverage crite-

ria

[10] [20] ✓ [26] [5]

SBSE ✓ ✓ software

DES [6, 37] [15] ✓ [37] [37] ✓ [6]

Aut. UI De-
sign

[31] [12, 24, 31, 34,

36]

[34] user

interac.

[36] generated

UI

Dist. Sys. [39] [13] data

replica-

tion

[3, 39]

ML, DM, DS model valida-

tion

model fitting exploratory

data analy-

sis

notebooks

[23]

model

persis-

tence

notebooks

[23]

Scient. Disc. ✓ ✓ [41] ✓

Reinf. Learn. rewards action selec-

tion

learning ✓

Causality ✓ causal

graphs

Black-Box
Optim.

cost function,

auto. model

selection [43]

[14] [14] [14]

Hypothesis formulation (1 in Figure 1) and evaluation (2, 3 in
Figure 1). Experimentation often concern the formulation of ques-

tions to be answered. Computationally, these can take the form

of logical formulas, automata, process algebra expressions, test

cases or Machine Learning models. Such hypotheses must then be

evaluated, which may be accomplished by formal verification, sim-

ulation, model validation or mere program execution. The division

of subjects in treatment and control groups is relevant when causal

relations are sought [32].

Optimization (1, 2, 3 in Figure 1). Although traditional scientific

experimentation is typically given in terms of hypothesis formula-

tion and testing, this is by no means the only way to think about

experiments. For instance, the purpose of an experiment might be

the minimization of the error of some target function, instead of

assessing the truth value of a hypothesis.
1

Exploration (1, 2, 3 in Figure 1). Accumulation of general knowl-

edge about subjects can be a central purpose. Application profiling

is one such case. Random sampling of execution paths in a large

state-space is one example of exploration technique that can be

used in multiple applications [10].

1
Nevertheless, some optimizations may be understood also as sequences of increasingly

better hypotheses.

Coordination (Figure 1). The overall experiment can be seen as

the coordination among an experimenter, various elements in the

experimental setup and subjects in order to achieve some aim. This

characteristic is best served by computation models founded on

communication, such as Milner’s vision of computation as the

interaction of communicating parts [28] or the tuple spaces of

Linda [13].

Nondeterminism (2, 3 in Figure 1). Nondeterministic specifica-

tions and programs allow for the exploration of multiple scenarios

without worrying about how each scenario is chosen, and also

permit the succinct expression of various possibilities, which is

convenient for the experimenter. Nondeterminism can be easily

represented in process algebras such as π -calculus [29] and CSP

[19], as well as in related languages (e.g., Occam [27] and, more

recently, Go [33]) and libraries (e.g., JCSP [26]).

Reproducibility (1, 2, 3 in Figure 1). The possibility of reproducing
experiments is fundamental in science. The fact that software is pre-

cise makes it particularly suitable for reproducibility. Interestingly,

such capabilities go beyond Computer Science research through

notebook-based tools [38] (see Laboratory Environment below).

Traceability (1, 2, 3b, 4 in Figure 1). It is often not enough to

know that a certain event took place, as one might need to know
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precisely which factors influenced it. For instance, causal graphs,

when available, provide such traceability [32]. As another example,

consider that implementations of CSP specifications using JCSP

[26] can be instrumented to monitor the behaviour of the system

with respect to specification elements.

Durability (3b, 4 in Figure 1). Results of experiments are valuable

and therefore should be made durable. These include not only the

final outcome, but also all the parameters and runtime conditions

that led to it. Such information can be examined by experimenters

and also used by the execution engine itself to improve future

experiments.

Fault-Tolerance (2, 3b in Figure 1). Like any software process,

experiments might crash in the course of their execution. Because

they can be expensive to run, last for a long time and involve many

subjects before any final state is reached, provisions must be taken

tomake EOC systems fault-tolerant. Moreover, partial results should

be preserved whenever the nature of the experiment permits (e.g.,

“subjects performed with a certain efficiency before the experiment

crashed”).

Laboratory Environment (1, 4, 5 in Figure 1). Experimenters are

central in EOC, therefore software to support their work is im-

portant, particularly with respect to user interfaces. Traditional

Integrated Development Environments (IDEs) include such labo-

ratory in the form of special tools to support test specification,

execution and reporting. In Machine Learning and related areas,

notebook-based interfaces such as Jupyter [23]
2
and Apache Zep-

pelin
3
provide a convenient way to explain the problem under

consideration, specify how to address it and store the results. Other

examples include WEKA [16] for Data Mining, JTorx [5] for Model-

Based Testing and UPPAAL [4] for Formal Verification.

3.1 The Role of Experimenters
The rise of the Data Scientist [9] shows the increasing importance

of people capable of extracting knowledge from the “natural ex-

periments” found in business data. Software developers are also

being deeply influenced by such experimental concerns, both in

software companies such as Microsoft [22] and within the Infor-

mation Technology departments of companies in other fields (e.g.,

through so-called DevOps [21]). Thus, experimentation is increas-

ingly orthogonal to other activities, and those proficient in this are

critical.

EOC pushes this evolution further through the central role given

to an experimenter, who: decides what is to be investigated or

achieved; defines how data is to be generated and collected; eval-

uates results; and decides how to iterate. That is to say, the ex-

perimenter should not consume data only passively, as the terms

“data science” and “data mining” suggest. Rather, he or she should

actively create ways in which to interact with the system of interest,

and this might mean defining or changing business functionality.

4 CONCLUSION
This text has shown through numerous examples that experimental

aspects can be found dispersed and intertwined in many software

2
Formerly called IPython. http://jupyter.org/

3https://zeppelin.apache.org/

systems. Other instances can be easily given. On this basis, it is

proposed that experimentation should be considered a class of com-

putation in its own right. In this manner, it is possible to abstract a

general software architecture (Figure 1) and a number of support-

ing principles, which establish the foundation of an Experiment-
Oriented Computing (EOC) approach to the engineering of software.

Many directions can be pursued, both in building industrial EOC

technologies and in advancing related research.

With respect to technologies, software libraries can be developed

in order to make the software architecture and experimentation ca-

pabilities seen here available to developers in a convenient manner.

These could include mechanisms to, for instance: handle various

kinds of interactions with subjects; explicitly specify nondetermin-

istic choices; manage subjects automatically; store the results of

experiments and the configurations that led to them; and define

formulas or other artefacts to guide program execution. Existing

software could perhaps be instrumented with some of these capa-

bilities (e.g., subjects management, to allow existing software to

be easily tested with different subjects). Middleware specifically

designed to handle large and distributed experimentation could be

created. Tools to simplify the specification and execution of exper-

iments could be developed, not unlike tools for Software Testing

that exist today. One can also imagine Experiment-Oriented Pro-

gramming languages as more concise and stricter alternatives to

libraries.

In relation to research, many theoretical aspects can be exam-

ined, including: experiment evaluation (e.g., the meaning of com-
pleteness and soundness); incorporation of advanced experimental

methods used in scientific practice (e.g., factorial experiments [8]);

and simplification of the architecture and principles proposed here.

Furthermore, it is interesting to consider what EOC can bring back

to classical views on experimentation. For instance, Radder [35] re-

views the Philosophical tradition and recommends further research

concerning “computer experiments.”

Experimentation methodology also presents practical challenges.

For instance, it is unclear to what extent business stakeholders

would be willing to permit experimenters to interfere with business

functionality to allow for better analyses. Moreover, ethical consid-

erations must be taken into account when subjects are humans.

As concrete examples, one can imaginemany existing techniques

and systems coming together under EOC, such as: profiling frame-

works [39] guided by Model-Based Testing techniques [44]; user

behavior analysis through scientific discovery methods [25] instead

of A/B testing [24]; the infusion of simulation-based analysis [37]

and Model Checking [2] in traditional Computer-Aided Design soft-

ware (e.g., AutoCAD) to account for dynamic properties of designs;

and Search-Based Software Engineering [18] managed in a large-

scale, distributed, fashion using black-box optimization platforms

[14]. The reader is invited to consider other similar combinations

(perhaps by filling in the blanks in Table 1) as well as entirely novel

applications of the principles described here.
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